Thermoeconomic Coherence: A Methodology for the Analysis and Optimisation of Thermal Systems

نویسندگان

  • Antonio Rovira
  • José María Martínez-Val
  • Manuel Valdés
چکیده

In the field of thermal systems, different approaches and methodologies have been proposed to merge thermodynamics and economics. They are usually referred as thermoeconomic methodologies and their objective is to find the optimum design of the thermal system given a specific objective function. Some thermoeconomic analyses go beyond that objective and attempt to find whether every component of the system is correctly designed or to quantify the inefficiencies of the components in economic terms. This paper takes another step in that direction and presents a new methodology to measure the thermoeconomic coherence of thermal systems, as well as the contribution of each parameter of the system to that coherence. It is based on the equality of marginal costs in the optimum. The methodology establishes a criterion to design coherently the system. Additionally, it may be used to evaluate how much a specific design is far from the optimum, which components are undersized or oversized and to measure the strength of the restrictions of the system. Finally, it may be extended to the analysis of uncertainties of the design process, providing a coherent design and sizing of the components with high uncertainties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimisation of wire-cut EDM process parameter by Grey-based response surface methodology

Wire electric discharge machining (WEDM) is one of the advanced machining processes. Response surface methodology coupled with Grey relation analysis method has been proposed and used to optimise the machining parameters of WEDM. A face centred cubic design is used for conducting experiments on high speed steel (HSS) M2 grade workpiece material. The regression model of significant factors such ...

متن کامل

Thermoeconomic optimization and exergy analysis of transcritical CO2 refrigeration cycle with an ejector

The purpose of this research is to investigate thermoeconomic optimization and exergy analysis of transcritical CO2 refrigeration cycle with an ejector. After modeling thermodynamic equations of elements and considering optimization parameters of emerging temperature of gas of cooler (Tgc) , emerging pressure of cooler's gas (Pgc) , and eva...

متن کامل

Thermoeconomic analysis of a hybrid PVT solar system integrated with double effect absorption chiller for cooling/hydrogen production

A novel solar-based combined system which is consisting of a concentrated PV, a double effect LiBr-H2O absorption chiller, and a Proton Exchange Membrane (PEM) is proposed for hydrogen production. A portion of the received energy is recovered to run a double effect absorption chiller and the rest is turned into electricity, being consumed in the PEM electrolyzer for hydrogen producti...

متن کامل

Thermoeconomic optimization and exergy analysis of transcritical CO2 refrigeration cycle with an ejector

The purpose of this research is to investigate thermoeconomic optimization and exergy analysis of transcritical CO2 refrigeration cycle with an ejector. After modeling thermodynamic equations of elements and considering optimization parameters of emerging temperature of gas of cooler (Tgc) , emerging pressure of cooler's gas (Pgc) , and eva...

متن کامل

Thermoeconomic analysis of reducing exergy losses in greenhouses with hydroponic cultivation system through drainage recycling and formation of water quality pyramid

Employing non-conventional water resources using treatment and recycling is considered as the main resource in addressing future water scarcity. Although non-conventional water recycling has been investigated in details in the literature, its impacts on irrigation-fertilizing systems have not been discussed using thermoeconomic analysis.  In this case study, using a hydroponic greenhouse system...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Entropy

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2016